

Le *Meilleur* de la formation en Comptabilité-Gestion à distance

Corrigés du DCG 2015 à télécharger gratuitement ! sur www.comptalia.com

CORRIGÉ INDICATIF

Choisissez le n°1 sur les formations comptables

Préparez dès à présent la rentrée et inscrivez-vous en **DSCG**!

30 formations et diplômes

SESSION 2015

UE 11 - CONTROLE DE GESTION

Durée de l'épreuve : 4 heures - Coefficient : 1,5

UE 11 - Contrôle de gestion

DURÉE de l'épreuve : 4 heures - COEFFICIENT : 1,5

Document autorisé: Aucun

Matériel autorisé :

Une calculatrice de poche à fonctionnement autonome sans imprimante et sans aucun moyen de transmission, à l'exclusion de tout autre élément matériel ou documentaire (circulaire n°99-186 du 16/11/99 ; BOEN n°42).

Document remis au candidat :

Le sujet comporte 14 pages numérotées de 1/14 à 14/14.

Il vous est demandé de vérifier que le sujet est complet dès sa mise à votre disposition.

Le sujet se présente sous la forme de 4 dossiers indépendants

Page de garde	Page 1
Présentation du sujet	Page 2
Dossier 1 – Politique de prix différentiels (4,5 points)	Page 3
Dossier 2 – Coûts cibles (5 points)	Page 5
Dossier 3 – Gestion de la masse salariale (8 points)	Page 6
Dossier 4 – Gestion de la qualité (2,5 points)	Page 7

Le sujet comporte les annexes suivantes :

DOSSIER 1 Annexe 1 – Eléments relatifs à la première commande supplémentaire Annexe 2 – Eléments relatifs à la deuxième commande supplémentaire	Page 8 Page 8
DOSSIER 2	Da = = 0
Annexe 3 – Analyse des coûts	Page 8
DOSSIER 3	
Annexe 4 – Présentation de la masse salariale pour les exercices 2013 et 2014	Page 9
Annexe 5 – Travaux préparatoires à l'analyse de la masse salariale pour 2013 et 2014	Page 10
Annexe 6 – Prévision de la masse salariale pour l'exercice 2015	Page 11
DOSSIER 4	
Annexe 7 – Rappels sur les lois de probabilités	Page 12
Annexe 8 - Table de la loi de Poisson	Page 13
Annexe 9 – Table de la loi normale	Page 14

AVERTISSEMENT

Si le texte du sujet, de ses questions ou de ses annexes vous conduit à formuler une ou plusieurs hypothèses, il vous est demandé de la (ou les) mentionner *explicitement* dans votre copie.

Il vous est demandé d'apporter un soin particulier à la présentation de votre copie. Toute information calculée devra être justifiée.

SUJET

La société HOUBLON

La société HOUBLON est l'une des dernières brasseries françaises indépendantes. Fondée en 1748, c'est une société anonyme dont la famille a conservé la totalité du capital. Elle est installée dans une petite ville d'Alsace où l'activité brassicole s'appuie sur la qualité exceptionnelle du bassin hydrographique alimenté par les eaux vosgiennes.

La société HOUBLON, avec un effectif stable autour d'une centaine de salariés, possède une filiale de distribution et deux dépôts dans les Vosges et le Haut-Rhin.

Le produit phare de sa gamme est la bière « Grand Houblon » dont 400 000 hectolitres sont écoulés chaque année auprès de ses clients : grandes et moyennes surfaces (GMS) pour 60 % du volume ; cafés, hôtels, restaurants (CHR) (35 %) ; le solde (5 %) réalisé à l'export en Europe et aux Etats Unis.

Malgré la crise économique, le marché de la bière reste globalement stable.

Le 31 juillet 2014, Henri Muller a pris la direction de l'entreprise et a décidé de recruter un contrôleur de gestion pour l'aider au pilotage de l'entreprise.

Le PDG table en effet sur l'élargissement de sa gamme pour apporter le relais de croissance dont l'entreprise a besoin. Il souhaite disposer de données chiffrées pertinentes pour affiner sa stratégie.

En outre, la société est sollicitée pour répondre à un appel d'offres sur un événement exceptionnel, Henri Muller veut disposer des éléments nécessaires pour y répondre en connaissance de cause.

Enfin, il estime indispensable de renforcer le contrôle des coûts, notamment en matière de ressources humaines, et d'améliorer la rentabilité globale de la société par l'optimisation de son organisation.

DOSSIER 1 - POLITIQUE DE PRIX DIFFERENTIELS

Après une étude précise des coûts de la société HOUBLON, le contrôleur de gestion a modélisé le coût de revient d'un hectolitre de bière Grand Houblon.

L'hectolitre est vendu 110 euros. La production annuelle s'élève à 400 000 hectolitres.

Le coût de revient est composé d'une partie variable et d'une partie fixe.

Pour une période de fabrication et de vente, le coût fixe est de 1 400 000 euros.

Le coût variable comprend une composante strictement proportionnelle aux quantités de 84,50 euros par hectolitre.

Travail à faire

1) Quel est le bénéfice courant de l'activité bières Grand Houblon?

*

La société HOUBLON vient d'être sollicitée pour être le fournisseur exclusif d'une grande manifestation festive alsacienne exceptionnelle qui aura lieu en août 2015, soit une commande de 30 000 hectolitres.

Compte tenu de cet important volume supplémentaire, le PDG sollicite le service de contrôle de gestion pour assister le service commercial et le service production dans l'établissement du devis.

Les informations collectées auprès du contrôle de gestion sont fournies en annexe 1.

Les équipes commerciales ont prévenu le PDG que deux brasseries concurrentes ont également été sollicitées pour répondre à cette demande.

Travail à faire

A l'aide de l'annexe 1 :

- 2) Afin de fixer le prix de vente par hectolitre de la commande supplémentaire, quel est le coût de référence à considérer ? Justifier votre réponse.
- 3) Quel prix de vente par hectolitre la société HOUBLON peut-elle proposer pour cette commande supplémentaire ? Quel est le nouveau bénéfice pour la société HOUBLON ?

Après avoir été retenue et reçu le bon de commande des 30 000 hectolitres, la société HOUBLON reçoit une nouvelle demande de la part des organisateurs de la manifestation. En effet, les collectivités locales ont accepté que la manifestation se prolonge de deux jours. Aussi, les organisateurs souhaiteraient commander 10 000 hectolitres supplémentaires.

La capacité actuelle de la société HOUBLON ne permet pas d'accepter cette nouvelle commande.

Deux options s'offrent au PDG:

- sous-traiter les hectolitres dépassant la capacité de production de la société ;
- investir pour augmenter la capacité de production.

Travail à faire

À partir de l'annexe 2 :

- 4) Expliquer pourquoi il n'est pas possible d'accepter la nouvelle commande de 10000 hectolitres au même prix que la précédente de 30 000 hectolitres.
- 5) Présenter, sous forme de tableau, le chiffrage du coût de revient des 10000 hectolitres supplémentaires pour les deux options se présentant à la société HOUBLON. Quelle est la meilleure option ?
- 6) À partir du coût de revient optimum, calculer le prix de vente que la société HOUBLON peut proposer aux organisateurs pour cette demande supplémentaire, sachant que l'entreprise souhaite toujours maintenir sa marge. Commenter.
- 7) Quelle réaction l'organisateur de l'évènement risque-t-il de manifester à la proposition de prix de la société HOUBLON pour cette commande supplémentaire ?

DOSSIER 2 - COUTS CIBLES

Le PDG de la société HOUBLON constate le succès grandissant des micro-brasseries qui proposent des bières très typées, à fort caractère et à un prix élevé, très rémunérateur.

Il est également conscient de la tendance actuelle à la baisse de consommation de bière classique en Europe et en France.

Il envisage donc de lancer une bière à destination d'une clientèle plus aisée mais aussi plus exigeante, pour qui le prix de vente n'est pas le critère d'achat principal, afin de compenser la baisse tendancielle de son volume d'activité ces dernières années.

La société HOUBLON est capable d'augmenter sa production avec des investissements limités.

La force de vente actuelle pourrait très facilement assurer la commercialisation de ces bières plus sophistiquées que ce soit auprès des GMS ou des CHR.

Pour lancer ce projet, le PDG a diligenté une étude de marché auprès d'un cabinet spécialisé et le contrôle de gestion a chiffré les coûts estimés des différents critères perçus par le consommateur de la bière classique Grand Houblon.

L'étude de marché a pour cible une clientèle haut de gamme capable de payer un prix élevé pour une bière. Elle a pour objectif de détecter les critères les plus déterminants dans l'achat d'une bière haut de gamme pour ce type de consommateurs.

L'étude permettra donc de déterminer les investissements les plus pertinents pour conquérir cette clientèle.

L'objectif de rentabilité de la société pour cette nouvelle bière est de 20 % du chiffre d'affaires.

Travail à faire

1) Après avoir défini la méthode des coûts cibles, préciser en quoi sa mise en œuvre nécessite une refonte organisationnelle.

À l'aide de l'annexe 3 :

- 2) Calculer le coût cible de production.
- 3) Calculer la part de chaque élément-clé du processus (brassage, fermentation, etc.) dans le coût cible de production.
- 4) Déterminer l'écart en valeur absolue et en valeur relative entre les coûts estimés et les coûts cibles de chaque élément-clé du processus, afin de mettre en évidence les efforts à effectuer dans le processus de production.
- 5) Commenter les résultats obtenus et indiquer comment l'entreprise peut rapprocher le coût estimé du coût cible.

DOSSIER 3 - GESTION DE LA MASSE SALARIALE

La politique salariale de la société HOUBLON consiste à verser un salaire brut mensuel plus élevé que la plupart de ses concurrents, afin d'attirer et de garder en son sein des salariés de qualité. En contrepartie, elle ne verse pas de treizième mois. Elle vous charge d'étudier l'évolution des salaires entre les années 2013 et 2014. La direction est composée de trois personnes : le PDG qui est aussi le directeur de production, un directeur administratif et financier et un directeur commercial.

Travail à faire

À l'aide des annexes 4 et 5 :

- 1. Calculer l'écart de masse salariale entre l'année 2013 et 2014.
- 2. Décomposer cet écart total, en écarts sur salaires nominaux, sur structure professionnelle et sur effectif. Vous vous appuierez notamment sur les travaux préparatoires réalisés par l'assistant de gestion.
- 3. Expliquer et commenter cette évolution. Vous mettrez l'accent sur l'interprétation et l'explication de l'écart sur structure professionnelle.

*

La société HOUBLON souhaite maîtriser pour l'année 2015 l'évolution de sa masse salariale. Elle vous charge d'établir les prévisions de cette dernière. La société HOUBLON résiste assez bien à la crise en parvenant à maintenir son activité tout en cherchant à développer des relais de croissance. Les salariés participant à l'effort global ont fait part d'une demande d'augmentation à la direction générale.

Face à la grogne montante des salariés, la direction étudie la proposition de deux scénarii :

- deux augmentations de 0,5 % intervenant pour la première le 1er mai et le 1er septembre pour la seconde ;
- une augmentation générale de 1,2 % à compter du 1er octobre.
- 4. Les propositions de la direction générale, suite à une indiscrétion parviennent à certains salariés qui s'interrogent sur la position à adopter quant à ces deux options. A priori, avec réflexion mais sans calcul précis quelle proposition les salariés ont-ils intérêt à retenir ?
- 5. Un salarié inquiet et désireux de bien comprendre les enjeux de la négociation salariale se renseigne auprès d'un ami syndicaliste rompu à l'exercice. Ce dernier lui indique que la première option est la plus intéressante. Démontrer-le par le calcul et donner des arguments permettant au salarié de bien comprendre les raisons.
- 6. La direction et les salariés, finalement sont parvenus à s'accorder sur la 1ère option. Déterminer et calculer l'incidence de ces mesures sur la masse salariale de 2015 et les effets probables sur celle de 2016. Préciser les effets ainsi mis en évidence.

À l'aide de l'annexe 6 :

7. Calculer la prévision de masse salariale pour l'année 2015. Les calculs seront arrondis à l'euro le plus proche.

DOSSIER 4 - GESTION DE LA QUALITE

Dans la composition de la bière entrent les levures et, pour les bières spéciales, les épices. La qualité de ces matières premières est essentielle pour fabriquer une bière d'exception. La société HOUBLON se les fait livrer par son fournisseur SPICE. La société HOUBLON a constaté que sur cent livraisons, deux sont défectueuses. L'accord passé entre la société HOUBLON et son fournisseur SPICE prévoit une pénalité de 5 % du prix de vente dès qu'il y a au moins une livraison défectueuse pour vingt livraisons effectuées.

Travail à faire

À l'aide des annexes 7, 8 et 9 :

- 1. Sans calcul préalable, identifier les impacts organisationnels et économiques que risque de supporter la société HOUBLON du fait de la multiplication éventuelle des livraisons défectueuses.
- 2. Déterminer les paramètres de la loi binomiale de probabilités suivie par le nombre de livraisons défectueuses pour vingt livraisons réalisées, sachant que les occurrences des défectuosités sont indépendantes. Calculer la probabilité d'avoir au moins une livraison défectueuse.

*

Le fournisseur SPICE propose une modification de la pénalité. Cette dernière s'appliquerait dès trois livraisons défectueuses sur cinquante livraisons effectuées.

3. À l'aide de la loi de Poisson, justifier son recours et déterminer la probabilité d'avoir trois livraisons défectueuses au moins. La société HOUBLON a-t-elle intérêt à accepter cette modification contractuelle?

*

Sur plusieurs années, le nombre de livraisons effectuées par le fournisseur SPICE est en moyenne de 1276. La direction de la société HOUBLON vous charge de déterminer quelle est la probabilité d'avoir moins de quinze livraisons défectueuses en 2015 avec ce fournisseur.

4. A l'aide de la loi normale, justifier son recours et calculer la probabilité d'avoir moins de quinze livraisons défectueuses, la correction de continuité étant supposée faite.

Annexe 1 Eléments relatifs à la 1ère commande supplémentaire

Le cours des matières premières ayant augmenté, le réapprovisionnement pour la fabrication de la bière supplémentaire ainsi que le recours à du personnel intérimaire entraîneront une augmentation de 12 % des charges variables.

Le PDG souhaite réaliser le même taux de rentabilité par rapport au chiffre d'affaires que celui obtenu sur la production courante.

Les charges variables sont strictement proportionnelles aux quantités produites.

La capacité de production de la société permet l'absorption de 35 000 hectolitres supplémentaires sans changement de structure.

Annexe 2 <u>Eléments relatifs à la deuxième commande supplémentaire</u>

Pour réaliser la production supplémentaire, la société HOUBLON peut :

- Sous- traiter en partie la production qu'elle ne peut pas réaliser elle-même compte tenu de sa structure, à condition d'augmenter de 30 % les coûts variables de l'activité courante, pour la part de production sous-traitée.
- Investir dans un nouvel équipement, augmentant les coûts fixes de 250 000 euros.

Le PDG souhaite maintenir son taux de rentabilité d'activité courante.

Annexe 3 Analyse des coûts

Résultats de l'étude de marché

L'enquête de marché auprès des consommateurs potentiels a permis de retenir un prix cible de 1,50 euros TTC la bouteille de 33 cl (en prenant le taux de TVA à 20 %).

L'étude a mis en évidence 5 critères essentiels demandés par le marché de la bière haut de gamme selon la hiérarchie suivante :

C1	Fermeture de la bouteille	15 %
C2	Degrés d'alcool	30 %
C3	Couleur de la bière	5 %
C4	Arôme	40 %
C5	Esthétique de la bouteille	10 %

Résultats de l'étude de coût

L'analyse de la valeur effectuée par le contrôle de gestion a identifié la contribution des différents types de coût aux différents critères de choix des consommateurs :

Types de coût	C1	C2	C3	C4	C5
Brassage		10	10	10	
Fermentation		70	10	10	
M.P (orge, houblon, eau, levures)		10	60	30	
Epices		10	20	50	
Capsule	80				20
Bouteille	20				40
Etiquette					20
Emballage carton					20

Coûts estimés

Le produit envisagé positionné sur le segment premium nécessite un soin .et une attention particuliers dans sa distribution se traduisant par un coût de distribution de 40 centimes par bouteille vendue.

Par ailleurs, le contrôle de gestion a estimé le coût de production des 8 références de coût retenues correspondant aux critères de l'étude de marché.

Pour cela, il s'est appuyé sur le processus productif actuel de la bouteille de bière classique Grand Houblon de 33 cl :

Références coûts	Coût estimé
Brassage	0,04
Fermentation	0,14
M.P. (orges, houblon, eau, levures)	0,07
Epices	0,01
Capsule	0,08
Bouteille	0,02
Etiquette	0,01
Emballage	0,02
	0,39

Annexe 4 Présentation de la masse salariale pour les exercices 2013 et 2014

La Société HOUBLON n'accorde pas de 13ème mois.

Année 2013

Catégories du personnel	Effectifs	Salaires moyens mensuels
Direction	3	6 030
Cadre junior	1	3 500
Cadres seniors	4	4 240
Agent de maîtrise junior	1	3 500
Agent de maîtrise senior	4	4 000
Techniciens	25	3 500
Employés	15	2 000
Ouvriers	47	1 600
Effectif total	100	2 507,50

Année 2014

Catégories du personnel	Effectifs	Salaires moyens mensuels
Direction	3	6 150
Cadre junior	1	3 535
Cadres seniors	4	4 300
Agent de maîtrise junior	1	3 535
Agent de maîtrise senior	4	4 100
Techniciens	30	3 570
Employés	14	2 040
Ouvriers	40	1 632
Effectif total	97	2 681,03

Annexe 5 <u>Travaux préparatoires à l'analyse de la masse salariale pour les exercices 2013 et 2014</u>

L'assistant de gestion a commencé à produire des calculs de masse salariale sous forme de tableaux qu'il vous communique ci-après :

	Masse salariale à structure catégorielle constante		
Catégories du personnel	Effectifs	Salaires moyens	Salaires annuels bruts
Direction	3	72 360	217 080
Cadre junior	1	42 000	42 000
Cadres seniors	4	50 880	203 520
Total cadres	5	48 104	245 520
Agent de maîtrise junior	1	42 000	42 000
Agent de maîtrise senior	4	48 000	192 000
Total agents de maîtrise	5	46 800	234 000
Techniciens	30	42 000	1 260 000
Employés	14	24 000	336 000
Ouvriers	40	19 200	768 000
Total	97	34 552,58	3 060 600

Catégories du personnel	Masse salariale à salaire constant		
Categories du personner	Effectifs	Salaires moyens	Salaires annuels bruts en €
Direction	3		
Cadre junior	1		
Cadres seniors	4		
Total cadres	5		
Agent de maîtrise junior Agent de maîtrise senior	1 4		
Total agents de maîtrise	5		
Techniciens	30		
Employés	14		
Ouvriers	40		
Total	97	30 090	2 918 730

Annexe 6 Prévision de la masse salariale pour l'exercice 2015

Salaires bruts de décembre 2014 en euros

	Effectifs	salaires bruts moyens décembre 2014		
Direction	3	6 089		
Cadres	5	4 368		
Agent de maîtrise	5	4 121		
Techniciens	30	3 606		
Employés	14	2 060		
Ouvriers	40	1 648		
Total	97			

Mouvements du personnel prévus en 2015, notamment en raison des départs à la retraite

Tableaux des départs et des embauches prévus

Départs à la retraite:

Catégories	Effectifs	Mois de départ (fin de mois)	Salaire décembre 2014
Technicien	1	Septembre	3 750
Employé	1	Mars	3 000
Employé	1	Novembre	3 000
Total	3		

Embauches:

Catégories	Effectifs	Mois d'arrivée (début de mois)	Salaire brut prévu lors de l'embauche
Technicien	1	Octobre	3 500
Employé	1	Avril	2 800
Total	2		

Annexe 7

Rappels sur les lois de probabilité

Calcul de probabilité d'une variable aléatoire suivant une loi binomiale

La probabilité pour que la variable aléatoire soit égale à k se calcule comme suit :

$$p(X = k) = C_n^k p^k q^{n-k}$$
 Avec $C_n^k = \frac{n!}{k! (n-k)!}$

• Conditions d'approximation d'une loi binomiale

Si X suit une loi binomiale B(n,p)	X peut être approchée par une loi
Si $n \ge 30$ et $p < 0,1$ et $np \le 15$	De Poisson P (λ) avec λ = np
Si $n \ge 30$ et $p = \pm 0.5$ et $q = \pm 0.5$	
Ou si np > 15 et nq > 15	Normale N(np; \sqrt{npq})
Ou si npq > 10	

• Calcul de probabilité d'une variable aléatoire suivant une loi de Poisson

$$P(X = k) = (e^{-\lambda}) * \frac{\lambda^k}{k!}$$

Condition d'approximation d'une loi de Poisson

Si X suit une loi de Poisson P (λ)	X peut être recherché par une loi
Si n ≥ 30 et p < 0,1 et np ≤ 15	De Poisson P (λ) avec λ = np
Si λ > 15	Normale N(λ ; $\sqrt{\lambda}$)

Annexe 8

Table de la loi de Poisson

Propriétés individuelles : $P(X = k) = (e^{-\lambda}) * \frac{\lambda^k}{k!}$

\ A	- 7	1		2		3	-	1		5
k \	$p(k,\hat{\lambda})$	F (k)	$p(k, \lambda)$	F(k)	$p(k, \lambda)$	F (k)	$p(k, \lambda)$	F (k)	$p(k, \lambda)$	F (k)
0	0,3679	0,3679	0,1353	0,1353	0,0498	0,0498	0,0183	0,0183	0,0067	0,0067
1	0,3679	0.7358	0,2707	0,4060	0,1494	0,1991	0,0733	0,0916	0,0337	0,0404
2	0,1839	0,9197	0,2707	0,6767	0,2240	0,4232	0,1465	0,2381	0,0842	0.1247
3	0,0613	0,9810	0,1804	0,8571	0,2240	0,6472	0,1954	0,4335	0,1404	0,2650
4	0,0153	0,9963	0,0902	0,9473	0,1680	0,8152	0,1954	0,6288	0.1755	0,4405
5	0.0031	0,9994		0,9834	0,1008	0,9161	0,1563	0,7851	0.1755	0,6160
6	0,0005	0,9999	0,0120	0,9955	0,0504	0,9665	0,1042	0,8893	0,1462	0,7622
7	0,0001	1,0000	0,0034	0.9989	0,0216	0,9881	0,0595	0,9489	0.1044	0,8666
8			0,0009	0,9998	0,0081	0,9962	0,0298	0,9786	0.0653	0,9319
9			0,0002	1,0000	0,0027	0,9989	0,0132	0,9919	0,0363	0,9682
10					0,0008	0,9997	0,0053	0,9972	0,0181	0,9863
11					0,0002	0,9999	0,0019	0,9991	0,0082	0,9945
12					0,0001	1,0000	0,0006	0,9997	0,0036	0,9980
13							0,0002	0,9999	0,0013	0,9993
14							0,0001	1,0000	0,0005	0,9998
15									0,0002	0,9999
16									0,0001	1,0000
17			1				1 1			1 1
18										
19										
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32										

Annexe 8 <u>Table de la loi de Poisson - suite</u>

0 0,0025 0,0025 0,0009 0,0009 0,0003 0,0003 0,0001 0,0001 1 0,0149 0,0174 0,0064 0,0073 0,0027 0,0030 0,0011 0,0012 0,0046 0,0620 0,0223 0,0296 0,0107 0,0138 0,0050 0,0062 0,0062 0,0107 0,138 0,0892 0,1512 0,0521 0,0818 0,0286 0,0424 0,0150 0,0212 0,0064 0,1339 0,2851 0,0912 0,1730 0,0573 0,0996 0,0337 0,0550 0,0062 0,01606 0,4457 0,1277 0,3007 0,0916 0,1912 0,0607 0,1157 0,00606 0,1606 0,6063 0,1490 0,4497 0,1221 0,3134 0,0911 0,2068 0,0067 0,1377 0,7440 0,1490 0,5987 0,1396 0,4530 0,1171 0,3239 0,0068 0,0133 0,8472 0,1304 0,7291 0,1396 0,5925 0,1318 0,4557 0,00068 0	,0023 0,0028 ,0076 0,0104
0 0,0025 0,0025 0,0009 0,0009 0,0003 0,0003 0,0001 0,0001 1 0,0149 0,0174 0,0064 0,0073 0,0027 0,0030 0,0011 0,0012 0, 2 0,0446 0,0620 0,0223 0,0296 0,0107 0,0138 0,0050 0,0062 0, 3 0,0892 0,1512 0,0521 0,0818 0,0286 0,0424 0,0150 0,0212 0, 4 0,1339 0,2851 0,0912 0,1730 0,0573 0,0996 0,0337 0,0550 0, 5 0,1606 0,4457 0,1277 0,3007 0,0916 0,1912 0,0607 0,1157 0, 6 0,1606 0,6063 0,1490 0,4497 0,1221 0,3134 0,0911 0,2068 0, 7 0,1377 0,7440 0,1490 0,5987 0,1396 0,4530 0,1171 0,3239 0, 8 0,1033	,0005 0,0005 ,0023 0,0028 ,0076 0,0104
1 0,0149 0,0174 0,0064 0,0073 0,0027 0,0030 0,0011 0,0012 0,0012 0,00652 0,00652 0,00593 0,00666 0,00593 0,00667 0,1157 0,00666 0,00666 0,00666 0,00666 0,00666 0,00666 0,00666 0,00666 0,00666 0,00666 0,00666 0,00666	,0023 0,0028 ,0076 0,0104
2 0,0446 0,0620 0,0223 0,0296 0,0107 0,0138 0,0050 0,0062 0,033 3 0,0892 0,1512 0,0521 0,0818 0,0286 0,0424 0,0150 0,0212 0,0212 0,0337 0,0550 0,0550 0,0550 0,0550 0,0550 0,0550 0,0550 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0607 0,1157 0,0608 0,0607 0,1157 0,0608 0,0608 0,01171 0,0208 0,0608 0,01771 0,0334 0,07171 0,0334 0,04530 0,1171 0,3239 0,0688 0,9161 0,1014 0,8305 0,1241 0,7166 0,1318 0,5874 0,0688 0,9161 0,0710	,0023 0,0028 ,0076 0,0104
3 0,0892 0,1512 0,0521 0,0818 0,0286 0,0424 0,0150 0,0212 0, 4 0,1339 0,2851 0,0912 0,1730 0,0573 0,0996 0,0337 0,0550 0, 5 0,1606 0,4457 0,1277 0,3007 0,0916 0,1912 0,0607 0,1157 0, 6 0,1606 0,6063 0,1490 0,4497 0,1221 0,3134 0,0911 0,2068 0, 7 0,1377 0,7440 0,1490 0,5987 0,1396 0,4530 0,1171 0,3239 0, 8 0,1033 0,8472 0,1304 0,7291 0,1396 0,5925 0,1318 0,4557 0, 9 0,0688 0,9161 0,1014 0,8305 0,1241 0,7166 0,1318 0,5874 0, 10 0,0413 0,9574 0,0710 0,9015 0,0993 0,8159 0,1186 0,7060 0, 11 0,	,0076 0,0104
4 0,1339 0,2851 0,0912 0,1730 0,0573 0,0996 0,0337 0,0550 0, 5 0,1606 0,4457 0,1277 0,3007 0,0916 0,1912 0,0607 0,1157 0, 6 0,1606 0,6063 0,1490 0,4497 0,1221 0,3134 0,0911 0,2068 0, 7 0,1377 0,7440 0,1490 0,5987 0,1396 0,4530 0,1171 0,3239 0, 8 0,1033 0,8472 0,1304 0,7291 0,1396 0,5925 0,1318 0,4557 0, 9 0,0688 0,9161 0,1014 0,8305 0,1241 0,7166 0,1318 0,5874 0, 10 0,0413 0,9574 0,0710 0,9015 0,0993 0,8159 0,1186 0,7060 0, 11 0,0225 0,9799 0,0452 0,9466 0,0722 0,8881 0,0970 0,8030 0,	
5 0,1606 0,4457 0,1277 0,3007 0,0916 0,1912 0,0607 0,1157 0, 6 0,1606 0,6063 0,1490 0,4497 0,1221 0,3134 0,0911 0,2068 0, 7 0,1377 0,7440 0,1490 0,5987 0,1396 0,4530 0,1171 0,3239 0, 8 0,1033 0,8472 0,1304 0,7291 0,1396 0,5925 0,1318 0,4557 0, 9 0,0688 0,9161 0,1014 0,8305 0,1241 0,7166 0,1318 0,5874 0, 10 0,0413 0,9574 0,0710 0,9015 0,0993 0,8159 0,1186 0,7060 0, 11 0,0225 0,9799 0,0452 0,9466 0,0722 0,8881 0,0970 0,8030 0,	.0189 0.0293
6 0,1606 0,6063 0,1490 0,4497 0,1221 0,3134 0,0911 0,2068 0, 7 0,1377 0,7440 0,1490 0,5987 0,1396 0,4530 0,1171 0,3239 0, 8 0,1033 0,8472 0,1304 0,7291 0,1396 0,5925 0,1318 0,4557 0, 9 0,0688 0,9161 0,1014 0,8305 0,1241 0,7166 0,1318 0,5874 0, 10 0,0413 0,9574 0,0710 0,9015 0,0993 0,8159 0,1186 0,7060 0, 11 0,0225 0,9799 0,0452 0,9466 0,0722 0,8881 0,0970 0,8030 0,	to a second of
7 0,1377 0,7440 0,1490 0,5987 0,1396 0,4530 0,1171 0,3239 0, 8 0,1033 0,8472 0,1304 0,7291 0,1396 0,5925 0,1318 0,4557 0, 9 0,0688 0,9161 0,1014 0,8305 0,1241 0,7166 0,1318 0,5874 0, 10 0,0413 0,9574 0,0710 0,9015 0,0993 0,8159 0,1186 0,7060 0, 11 0,0225 0,9799 0,0452 0,9466 0,0722 0,8881 0,0970 0,8030 0,	,0378 0,0671
8 0,1033 0,8472 0,1304 0,7291 0,1396 0,5925 0,1318 0,4557 0, 9 0,0688 0,9161 0,1014 0,8305 0,1241 0,7166 0,1318 0,5874 0, 10 0,0413 0,9574 0,0710 0,9015 0,0993 0,8159 0,1186 0,7060 0, 11 0,0225 0,9799 0,0452 0,9466 0,0722 0,8881 0,0970 0,8030 0,	,0631 0,1302
9 0,0688 0,9161 0,1014 0,8305 0,1241 0,7166 0,1318 0,5874 0,000 0,0013 0,9574 0,0710 0,9015 0,0993 0,8159 0,1186 0,7060 0,001 0,0025 0,9799 0,0452 0,9466 0,0722 0,8881 0,0970 0,8030 0,00	,0901 0,2203
10	,1126 0,3329
11 0,0225 0,9799 0,0452 0,9466 0,0722 0,8881 0,0970 0,8030 0	,1251 0,4580
	,1251 0,5831
12 0.0113 0.9912 0.0264 0.9730 0.0481 0.9362 0.0728 0.8758 0.	,1137 0,6968
	,0948 0,7916
13 0,0052 0,9964 0,0142 0,9872 0,0296 0,9658 0,0504 0,9261 0,	,0729 0,8645
14 0,0022 0,9986 0,0071 0,9943 0,0169 0,9827 0,0324 0,9585 0,	,0521 0,9166
15 0,009 0,9995 0,0033 0,9976 0,0090 0,9918 0,0194 0,9780 0,	,0347 0,9513
16 0,003 0,9998 0,0014 0,9990 0,0045 0,9963 0,0109 0,9889 0,	,0217 0,9730
17 0,001 1,0000 0,0006 0,9996 0,0021 0,9984 0,0058 0,9947 0,	,0128 0,9857
18 0,0002 0,9999 0,0009 0,9993 0,0029 0,9976 0,	,0071 0,9928
19 0,0001 1,0000 0,0004 0,9997 0,0014 0,9989 0,	,0037 0,9965
20 0,0002 0,9999 0,0006 0,9996 0,	,0019 0,9984
21 0,0001 1,0000 0,0003 0,9998 0,	,0009 0,9993
22 0,0001 0,9999 0,	,0004 0,9997
23 1,000 0,	,0002 0,9999
24 0,	,0000,1 1,0000
25	
26	
27	- 1
28	
29	
30	1
31	
32	

Annexe 9

Table de la loi normale centrée réduite

Probabilité de trouver une valeur inférieure à t

$$\Pi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{\frac{t^2}{2}} dt$$

0,500 0 0,539 8 0,579 3	0,01 0,504 0 0,543 8	0,02 0,508 0	0,03 0,512 0	0,04	0,05	0,06	0,07	0,08	
0,539 8 0,579 3			0,312 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
579 3		0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0.617 9	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1
	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,680 8	0,684 4	0,687 9
0,691 5	0,695 0	0,698 5	0,701 9	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4
0,725 7	0,729 1	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,758 0	0,761 1	0,764 2	0,767 3	0,770 3	0,773 4	0,776 4	0,779 3	0,782 3	0,785 2
0,788 1	0,791 0	0,793 9	0,796 7	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,815 9	0,818 6	0,821 2	0,823 8	0,826 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
0,841 3									0,862 1
,	,	,		,		,	,	,	0,883 0
,	,	,	,	,	,			,	0,901 5
,		,	,	,	,		,	,	0,917 7
		,	,				,	,	0,931 9
									0,944 1
,	,	,	,		,	,	,	,	0,954 5
		,			,	,		,	0,963 3
									0,970 6
3,9/1 3	0,9/1 9	0,972 6	0,9/3 2	0,9/3 8	0,974 4	0,975 0	0,975 6	0,976 1	0,976 7
0.77.0	0.077.0	0.070.2	0.070.0	0.070.2	0.070.0	0.000.3	0.000.0	0.001.3	0.001.7
,	,		,		,	,	,	,	0,981 7
,	,	,	,	,	,	,	,	,	0,985 7
	,	,	,			,			0,989 0 0,991 6
•									0,991 6
,	,	,	,	,	,	,			0,995 0
•	,	,	,		,	,			0,995 2
									0,990 4
,	,		,			,			0,998 1
							,		0,998 6
	0,617 9 0,655 4 0,691 5 0,725 7 0,758 0 0,788 1 0,815 9	0,617 9 0,621 7 0,655 4 0,659 1 0,695 0 0,725 7 0,758 0 0,761 1 0,788 1 0,791 0 0,815 9 0,818 6 0,843 8 0,866 5 0,884 9 0,886 9 0,903 2 0,904 9 0,919 2 0,920 7 0,933 2 0,946 3 0,955 4 0,956 4 0,964 9 0,971 9 0,971 3 0,971 9 0,982 1 0,982 6 0,986 1 0,986 4 0,993 8 0,994 0 0,993 8 0,994 0 0,995 3 0,995 5 0,997 4 0,997 5	0,617 9 0,621 7 0,625 5 0,655 4 0,659 1 0,662 8 0,691 5 0,695 0 0,698 5 0,725 7 0,729 1 0,732 4 0,758 0 0,761 1 0,764 2 0,788 1 0,791 0 0,793 9 0,815 9 0,818 6 0,821 2 0,841 3 0,866 5 0,868 6 0,884 9 0,886 9 0,888 8 0,903 2 0,904 9 0,906 6 0,919 2 0,920 7 0,922 2 0,933 2 0,946 3 0,947 4 0,955 4 0,956 4 0,957 3 0,971 3 0,971 9 0,972 6 0,971 3 0,978 8 0,988 8 0,982 1 0,982 6 0,983 0 0,985 3 0,994 0 0,994 1 0,995 3 0,995 5 0,995 6 0,997 4 0,997 5 0,997 6	0,617 9 0,621 7 0,625 5 0,629 3 0,655 4 0,659 1 0,662 8 0,666 4 0,691 5 0,695 0 0,698 5 0,701 9 0,725 7 0,729 1 0,732 4 0,735 7 0,758 0 0,761 1 0,764 2 0,767 3 0,788 1 0,791 0 0,793 9 0,796 7 0,815 9 0,818 6 0,821 2 0,823 8 0,843 8 0,846 1 0,848 5 0,864 3 0,866 5 0,868 6 0,870 8 0,93 2 0,904 9 0,906 6 0,908 2 0,919 2 0,920 7 0,922 2 0,923 6 0,933 2 0,946 3 0,947 4 0,948 4 0,955 4 0,956 4 0,957 3 0,958 2 0,946 1 0,964 9 0,965 6 0,966 4 0,971 3 0,971 9 0,972 6 0,973 2 0,982 1 0,982 6 0,983 0 0,983 4 0,989 1 0,980 6 0,987 1 0,998 8 0,990 1 0,993 8 0,994 0 0,996 6 0,995 7 0,995 7	0,617 9 0,621 7 0,625 5 0,629 3 0,633 1 0,655 4 0,659 1 0,662 8 0,666 4 0,670 0 0,691 5 0,695 0 0,698 5 0,701 9 0,705 4 0,725 7 0,729 1 0,732 4 0,735 7 0,738 9 0,758 0 0,761 1 0,764 2 0,767 3 0,770 3 0,788 1 0,791 0 0,793 9 0,796 7 0,799 5 0,815 9 0,818 6 0,821 2 0,823 8 0,826 4 0,841 3 0,843 8 0,846 1 0,848 5 0,850 8 0,843 9 0,886 9 0,886 8 0,870 8 0,872 9 0,91 2 0,904 9 0,906 6 0,908 2 0,909 9 0,91 2 0,920 7 0,922 2 0,923 6 0,925 1 0,933 2 0,946 3 0,947 4 0,948 4 0,949 5 0,945 2 0,946 3 0,947 4 0,948 4 0,949 5 0,955 4 0,956 4 0,957 3 0,958 2 0,959 1 0,964 1 0,964 9 0,965 6 0,966 4 0,967 3 0,973 8	0,617 9 0,621 7 0,625 5 0,629 3 0,633 1 0,636 8 0,655 4 0,659 1 0,662 8 0,666 4 0,670 0 0,673 6 0,691 5 0,695 0 0,698 5 0,701 9 0,705 4 0,708 8 0,725 7 0,729 1 0,732 4 0,735 7 0,738 9 0,742 2 0,758 0 0,761 1 0,764 2 0,767 3 0,770 3 0,773 4 0,788 1 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,815 9 0,818 6 0,821 2 0,823 8 0,826 4 0,828 9 0,841 3 0,843 8 0,846 1 0,848 5 0,850 8 0,853 1 0,864 3 0,866 5 0,868 6 0,870 8 0,872 9 0,874 9 0,843 9 0,886 9 0,888 8 0,890 6 0,892 5 0,894 3 0,919 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,933 2 0,940 9 0,906 6 0,908 2 0,909 9 0,911 5 0,933 2 0,946 3 0,947 4 0,948 4 0,949 5 0,955 5	0,617 9 0,621 7 0,625 5 0,629 3 0,633 1 0,636 8 0,640 6 0,655 4 0,659 1 0,662 8 0,666 4 0,670 0 0,673 6 0,677 2 0,691 5 0,695 0 0,698 5 0,701 9 0,705 4 0,708 8 0,712 3 0,758 0 0,761 1 0,764 2 0,767 3 0,770 3 0,776 4 0,776 4 0,788 1 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,805 1 0,818 6 0,821 2 0,823 8 0,826 4 0,828 9 0,831 5 0,841 3 0,843 8 0,846 1 0,848 5 0,850 8 0,853 1 0,855 4 0,884 9 0,886 9 0,888 8 0,890 6 0,892 5 0,894 3 0,896 2 0,903 2 0,904 9 0,906 6 0,908 2 0,909 9 0,911 5 0,913 1 0,945 3 0,934 5 0,935 7 0,937 0 0,938 2 0,939 4 0,940 6 0,945 4 0,946 3 0,947 4 0,948 4 0,949 5 0,950 5 0,951 5 0,955 4 0,956 4 0,957 3	0,617 9 0,621 7 0,625 5 0,629 3 0,633 1 0,636 8 0,640 6 0,644 3 0,655 4 0,659 1 0,662 8 0,666 4 0,670 0 0,673 6 0,677 2 0,680 8 0,695 0 0,698 5 0,701 9 0,705 4 0,708 8 0,712 3 0,712 3 0,712 3 0,712 3 0,712 3 0,712 3 0,742 2 0,745 4 0,748 6 0,758 0 0,761 1 0,764 2 0,767 3 0,778 9 0,774 4 0,776 4 0,779 3 0,776 4 0,779 3 0,776 4 0,779 3 0,776 4 0,779 3 0,776 4 0,779 3 0,788 1 0,791 0 0,793 9 0,796 7 0,799 5 0,802 3 0,805 1 0,807 8 0,818 6 0,821 2 0,823 8 0,826 4 0,828 9 0,831 5 0,834 0 0,841 3 0,843 8 0,846 1 0,848 5 0,850 8 0,853 1 0,855 4 0,857 7 0,857 9 0,854 9 0,857 7 0,879 0 0,879 0 0,874 9 0,877 0 0,879 0 0,848 8 0,890 6 0,892 5 0,894 3 0,896 2 0,898 0 0,993 2 0,993 9 0,9	0,617 9

Table pour les grandes valeurs de t

t	3	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4	4,5
П	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 84	0,999 92	0,999 97	0,999 99

NB. La table donne les valeurs Π (t) pour t > 0. Si t est < 0, il faut prendre le complément à l'unité de la valeur lue dans la table : Π (- t) = 1 - Π (t)

Proposition de correction

Remarque préalable.

Le corrigé proposé par Comptalia est souvent plus détaillé que ce que l'on est en droit d'attendre d'un candidat dans le temps imparti pour chaque épreuve. A titre pédagogique le corrigé comporte donc parfois des rappels de cours, non exigés et non exigibles dans le traitement du sujet.

DOSSIER 1 - Politique de prix différentiels

1. Quel est le bénéfice courant de l'activité bières Grand Houblon?

Chiffres d'affaires	400 000 * 110,00	44 000 000
- Charges variables	400 000 * 84,50	- 33 800 000
= M/CV		10 200 000
- CF		- 1 400 000
= Bénéfice courant		8 800 000

2. Afin de fixer le prix de vente par hectolitre de la commande supplémentaire, quel est le coût de référence à considérer ? Justifier votre réponse.

Le coût de référence à considérer est le coût marginal.

En théorie, le coût marginal est le coût de la dernière unité produite et vendue. Toutefois, dans la réalité, on s'intéresse plutôt au coût d'une série supplémentaire et non à une unité supplémentaire.

Par définition, le coût marginal comporte toujours des charges variables (puisqu'il y a accroissement de la production). C'est notamment le cas de la consommation de matières 1ères ou de MOD.

Rappelons que les charges variables sont proportionnelles à l'activité. Ces charges variables peuvent être directes ou indirectes. Il peut également comporter des charges fixes. En effet, il peut arriver qu'il faille modifier la structure pour produire une unité (ou une série) supplémentaire. Rappelons que les charges fixes peuvent varier sur une période mais qu'elles ne sont pas proportionnelles à l'activité.

Dans notre cas le coût marginal ne comporte que des charges variables et ces charges variables augmentent de 12 %.

Charges variables ou coût marginal	30 000 * [84,50 * (1,12)]	2 839 200
------------------------------------	---------------------------	-----------

A l'unité => 2 839 200/30 000 = 94,64 €

3. Quel prix de vente par hectolitre la société HOUBLON peut-elle proposer pour cette commande supplémentaire ? Quel est le nouveau bénéfice pour la société HOUBLON ?

- Prix de vente par hectolitre

Taux de rentabilité de la production courante = 8 800 000/44 000 000 = 20,00 %

Donc le coût marginal représente = 80 % du prix de vente

Donc prix de vente marginal = 94,64/0,80 = 118,30 €

Ou:

=>
$$\left(\frac{X - 94,64}{X}\right)$$
 = 0,20 => 0,20X = X - 94,64 => 0,80X = 94,64 => X = 94,64/0,80 = 118,30 €

- Nouveau bénéfice

Pour contrôle.

Ancien bénéfice + Bénéfice marginal =
$$8\ 800\ 000\ + [30\ 000\ * (118,30\ - 94,64)] = 8\ 800\ 000\ + 709\ 800\ = 9\ 509\ 800$$

4. Expliquer pourquoi il n'est pas possible d'accepter la nouvelle commande de 10 000 hectolitres au même prix que la précédente de 30 000 hectolitres ?

Ce n'est pas possible puisque pour réaliser la 2^{ème} commande supplémentaire de 10 000 hectolitre l'entreprise doit :

- soit sous-traiter les 5 000 hectolitres dépassant la capacité maximum de 35 000
- => Ceci suppose une augmentation de 30 % des coûts variables
 - soit investir dans un nouvel équipement de 250 000 € et donc augmenter les charges fixes d'autant.

Dans les deux scénarios le coût marginal augmenterait. Il n'est donc pas possible d'accepter cette nouvelle commande au même prix que la précédente.

5. Présenter, sous forme de tableau, le chiffrage du coût de revient des 10 000 hectolitres supplémentaires pour les deux options se présentant à la société HOUBLON. Quelle est la meilleure option ?

		2 ^{ème} option		
	1 ^{er} 5 000 hectolitre fabriqués en interne	2 ^{ème} 5 000 hectolitre fabriqués sous-traités	Total	Investissement
Coût variable	5 000 * 84,50 * 1,12 = 473 200	(84,50 * 1,30) * 5 000 = 549 250	1 022 450	10 000 * 94,64 = 946 400
Charges fixes supplémentaires	-	-	-	250 000
Coût de revient marginal		-	1 022 450	1 196 400

C'est donc la sous-traitance qui apparait comme étant la meilleure solution.

6. A partir du coût de revient optimum, calculer le prix de vente que la société HOUBLON peut proposer aux organisateurs pour cette demande supplémentaire, sachant que l'entreprise souhaite toujours maintenir sa marge. Commenter.

En respectant les 20 % de marge => Nouveau prix de vente =
$$\frac{\frac{1\ 022\ 450}{0.80}}{10\ 000} = 127.81 \in$$

7. Quelle réaction l'organisateur de l'évènement risque-t-il de manifester à la proposition de prix de la société HOUBLON pour cette commande supplémentaire ?

L'organisateur risque de ne pas comprendre la politique tarifaire de l'entreprise Houblon puisqu'en commandant 10 000 hectolitres supplémentaires le prix de vente proposé est en augmentation !

DOSSIER 2 - Coûts cibles

1. Après avoir défini la méthode des coûts cibles, préciser en quoi sa mise en œuvre nécessite une refonte organisationnelle.

La méthode repose sur l'idée que le prix de vente du produit est fixé par le marché. Le prix ne dépend donc pas du coût : c'est au contraire le coût du produit qui doit être adapté au prix du marché.

Le coût est limité par deux contraintes :

- la contrainte du prix imposé par le marché ;
- la contrainte de la politique de marge choisie par l'entreprise.

Le coût cible (ou coût autorisé) est défini comme le coût maximal admissible sous contraintes du prix de vente possible et de la marge souhaitée => Prix de vente – Marge => Coût cible

L'analyse de la valeur est une méthode de travail en groupe pour concevoir (ou modifier) un produit en visant à réaliser un équilibre entre les fonctions nécessaires du produit (les besoins du client à satisfaire, justification du prix de vente) et le coût de production cible des éléments assurant ces fonctions.

2. Calculer le coût cible de production.

Prix de vente TTC		1,50
- TVA	- (1,50/1,2) * 0,2	- 0,25
= Prix de vente HT		1,25
- Marge	1,25 * 0,20	- 0,25
= Coût de revient		1,00
- Coût de distribution		- 0,40
= Coût cible de production		0,60

3. Calculer la part de chaque élément-clé du processus (brassage, fermentation, etc) dans le coût cible de production.

	C1	C2	C3	C4	C5	Total en %
Brassage		10 * 0,30 = 3	10 * 0,05 = 0,5	10 * 0,40 = 4		7,50
Fermentation		70 * 0,30 = 21	10 * 0,05 = 0,5	10 * 0,40 = 4		25,50
MP (orge)		10 * 0,30 = 3	60 * 0,05 = 3	30 * 0,40 = 12		18,00
Epices		10 * 0,30 = 3	20 * 0,05 = 1	50 * 0,40 = 20		24,00
Capsules	80 * 0,15 = 12				20 * 0,10 = 2	14,00
Bouteilles	20 * 0,15 = 3				40 * 0,10 = 4	7,00
Etiquettes					20 * 0,10 = 2	2,00
Emballages					20 * 0,10 = 2	2,00
Total en %	15	30	5	40	10	100,00

4. Déterminer l'écart en valeur absolue et en valeur relative entre les coûts estimés et les coûts cibles de chaque élément-clé du processus, afin de mettre en évidence les efforts à effectuer dans le processus de production.

				Ec	arts
	Coût estimé	Coût cible		Valeur en €	Valeur en %
Brassage	0,04	0,60 * 7,50%	= 0,045	-0,005	-13%
Fermentation	0,14	0,60 * 25,50%	= 0,153	-0,013	-9%
MP (orge)	0,07	0,60 * 18,00%	= 0,108	-0,038	-54%
Epices	0,01	0,60 * 24,00%	= 0,144	-0,134	-1 340%
Capsules	0,08	0,60 * 14,00%	= 0,084	-0,004	-5%
Bouteilles	0,02	0,60 * 7,00%	= 0,042	-0,022	-110%
Etiquettes	0,01	0,60 * 2,00%	= 0,012	-0,002	-20%
Emballages	0,02	0,60 * 2,00%	= 0,012	0,008	40%
Total	0,39		0,60	-0,21	-54%

5. Commenter les résultats obtenus et indiquer comment l'entreprise peut rapprocher le coût estimé du coût cible.

Le coût estimé est généralement supérieur au coût cible. Il est donc généralement nécessaire d'abaisser le coût estimé jusqu'au niveau du coût cible.

La réduction du coût estimé est obtenue :

- par une modification des caractéristiques du produit qui n'altère pas la valeur perçue par le client;
- par une amélioration des méthodes d'approvisionnement, de production et de distribution existantes.

Dans le cas présent c'est l'inverse qui se produit : le coût cible est supérieur au coût estimé actuel !

En conséquence cela suppose que l'entreprise a sous-évalué les attentes du client pour ce produit haut de gamme. En effet on peut constater que pour la quasi-totalité des éléments clefs du processus les coûts estimés sont inférieurs aux coûts cibles. C'est le cas notamment des épices, des matières 1ères (environ 82 % de l'écart total en valeur).

L'entreprise doit rechercher à améliorer la qualité des épices et des matières 1ères puisque c'est un élément essentiel à la fabrication d'une bière d'exception.

DOSSIER 3 - Gestion de la masse salariale

1. Calculer l'écart de masse salariale entre l'année 2013 et 2014.

	2013				2014	
	Effectif	Salaire moyen annuel	Masse salariale annuelle	Effectif	Salaire moyen annuel	Masse salariale annuelle
	1	2	3 = 1 * 2	4	5	6 = 4 * 5
Direction	3	72 360,00	217 080,00	3	73 800,00	221 400,00
Cadre junior	1	42 000,00	42 000,00	1	42 420,00	42 420,00
Cadres senior	4	50 880,00	203 520,00	4	51 600,00	206 400,00
Total 1	8	57 825,00	462 600,00	8	58 777,50	470 220,00
Agent de maîtrise junior	1	42 000,00	42 000,00	1	42 420,00	42 420,00
Agents de maîtrise séniors	4	48 000,00	192 000,00	4	49 200,00	196 800,00
Total 2	5	46 800,00	234 000,00	5	47 844,00	239 220,00
Techniciens	25	42 000,00	1 050 000,00	30	42 840,00	1 285 200,00
Employés	15	24 000,00	360 000,00	14	24 480,00	342 720,00
Ouvriers	47	19 200,00	902 400,00	40	19 584,00	783 360,00
Total 3	87	85 200,00	2 312 400,00	84	28 705,71	2 411 280,00
Total général	100	30 090,00	3 009 000,00	97	32 172,37	3 120 720,00

Remarques

- 2) Vérification des salaires moyens mensuels par rapport à l'annexe 4 :
 - => Pour 2013 : salaires moyens mensuels = 30 090,00/12 = 2 507,50
 - => Pour 2014 : salaires moyens mensuels = 32 172,37/12 = 2 681,03

= Variation de la masse salariale	- 3 009 000,00 € = 111 720,00 €
- Masse salariale 2013	- 3 009 000,00 €
Masse salariale 2014	3 120 720,00 €

¹⁾ Nous avons choisi cette présentation pour calculer la variation de la masse salariale sur 2 années consécutives pour faciliter la réponse à la question 2 ci-après !

Le Meilleur de la formation en comptabilité-gestion à distance

2. Décomposer cet écart total, en écarts sur salaires nominaux, sur structure professionnelle et sur effectif.

Pour répondre à cette question nous utiliserons le tableau suivant.

	2013			2014		
	Effectif	Salaire moyen annuel	Masse salariale annuelle	Effectif	Salaire moyen annuel	Masse salariale annuelle
	1	2	3 = 1 * 2	4	5	6 = 4 * 5
Direction	3	72 360,00	217 080,00	3	73 800,00	221 400,00
Cadre junior	1	42 000,00	42 000,00	1	42 420,00	42 420,00
Cadres senior	4	50 880,00	203 520,00	4	51 600,00	206 400,00
Total 1	8	57 825,00	462 600,00	8	58 777,50	470 220,00
Agent de maîtrise junior	1	42 000,00	42 000,00	1	42 420,00	42 420,00
Agents de maîtrise séniors	4	48 000,00	192 000,00	4	49 200,00	196 800,00
Total 2	5	46 800,00	234 000,00	5	47 844,00	239 220,00
Techniciens	25	42 000,00	1 050 000,00	30	42 840,00	1 285 200,00
Employés	15	24 000,00	360 000,00	14	24 480,00	342 720,00
Ouvriers	47	19 200,00	902 400,00	40	19 584,00	783 360,00
Total 3	87	85 200,00	2 312 400,00	84	28 705,71	2 411 280,00
Total général	100	30 090,00	3 009 000,00	97	32 172,37	3 120 720,00

Masse salariale fictive 1	Masse salariale fictive 2	Masse salariale fictive 3
7 = 4 * 2	8 = 4 * 2	9 = 4 * 2
217 080,00	217 080,00	
42 000,00	42 000,00	
203 520,00	203 520,00	
462 600,00	462 600,00	
42 000,00	42 000,00	
192 000,00	192 000,00	
234 000,00	234 000,00	
1 260 000,00	1 260 000,00	
336 000,00	336 000,00	
768 000,00	768 000,00	
2 364 000,00	2 364 000,00	
3 060 600,00	3 060 600,00	2 918 730,00

Principe

Dans le cas général décomposer l'écart général de masse salariale revient à calculer et à d'analyser les écarts suivants :

- un écart sur taux nominal des salaires ;
- un écart sur ancienneté (ou de noria) ;
- un écart sur structure (ou sur composition de catégorie) ;
- un écart sur effectif.

Pour analyser ces écarts il faut calculer trois masses salariales fictives.

- Masse salariale fictive 1

Il s'agit de la masse salariale fictive de N en tenant compte des effectifs de N et du salaire moyen annuel de N-1 (en raisonnant par catégorie de salariés **ET** par ancienneté).

Autrement dit, on calcule quelle serait la masse salariale de N avec les salaires de N-1 et les effectifs de N (par catégorie et par ancienneté).

Masse salariale fictive 2

Il s'agit de la masse salariale fictive de N en tenant compte des effectifs de N et du salaire moyen annuel de N-1 (en raisonnant **uniquement** par catégorie de salariés). On ne s'occupe donc plus de l'ancienneté au sens strict!

Autrement dit, on calcule quelle serait la masse salariale de N en raisonnant par catégorie, avec les salaires moyens de N-1 (toute ancienneté confondue) et les effectifs de N.

- Masse salariale fictive 3

Il s'agit de la masse salariale fictive de N en tenant compte des effectifs de N et du salaire moyen annuel de N-1 (en raisonnant sur tous les salariés).

On ne s'occupe donc plus de l'ancienneté ni des catégories au sens strict!

Autrement dit, on calcule quelle serait la masse salariale de N en raisonnant pour tous les salariés, avec les salaires moyens de N-1 et les effectifs de N.

Remarque.

N'ayant pas d'information concernant l'ancienneté, les masses salariales fictive 1 et 2 seront égales dans ce cas.

Définitions des écarts

Écart sur taux nominal	Masse salariale réelle de N - Masse salariale fictive 1
Écart sur ancienneté	Masse salariale fictive 1 - Masse salariale fictive 2
Écart sur structure	Masse salariale fictive 2 - Masse salariale fictive 3
Écart sur effectif	Masse salariale fictive 3 - Masse salariale réelle N-1

Remarque.

Pour l'entreprise, si les écarts tels que définis ci-dessus sont positifs, ils sont défavorables et favorables s'ils sont négatifs.

- Calcul des écarts

Ecart de taux nominal = Masse salariale réelle de N - Masse salariale fictive 1 => Ecart sur taux nominal = 3 120 720,00 - 3 030 600,00 = 60 120,00 € (défavorable)

Ecart d'ancienneté = Masse salariale fictive 1 - Masse salariale fictive 2 => Ecart sur ancienneté = 3 030 600,00 - 3 030 600,00 = 0 €

Remarque

Dans cet exemple il est logique de ne pas trouver d'écart d'ancienneté puisque nous n'avons pas ces informations concernant les différentes catégories.

Ecart de structure = Masse salariale fictive 2 - Masse salariale fictive 3 => Ecart sur structure = 3 030 600,00 - 2 918 730,00 = 141 870 € (défavorable)

Ecart d'effectif = Masse salariale fictive 3 - Masse salariale réelle N => Ecart sur effectif = 2 918 730,00 - 3 120 720,00 = - 90 270,00 (favorable)

Vérification de la variation totale de la masse salariale entre 2014 et 2013 => 60 120,00 + 0 + 141 870,00 - 90 270,00 = 111 720,00 € (défavorable)

3. Expliquer et commenter cette évolution. Vous mettrez l'accent sur l'interprétation et l'explication de l'écart sur structure professionnelle.

- Interprétation des écarts

L'écart sur taux nominal montre l'incidence de la variation des salaires moyens par catégorie et par ancienneté. Il est ici de 60 120,00 € et est défavorable. En effet les salaires moyens de toutes les catégories ont augmenté.

L'écart sur ancienneté (ou de noria) montre l'incidence du renouvellement des anciens salariés par des nouveaux salariés. Dans la plupart des entreprises cet écart a pour effet de diminuer la masse salariale, (les nouveaux étant en général moins payés que les anciens). Dans le cas présent il n'y a pas d'écart sur ancienneté.

L'écart sur structure montre l'incidence de la variation de la répartition des salariés entre les catégories professionnelles. Il est ici de 141 870,00 € et est défavorable. Ceci est dû au fait que les effectifs ont augmenté dans les catégories les mieux rémunérées alors qu'ils ont diminués dans les catégories moins bien rémunérées. En effet :

- le nombre de techniciens a augmenté de 5 pendant que dans le même temps le nombre d'employés et d'ouvriers diminuait respectivement de 1 et de 7 ;
- le salaire moyen des techniciens est largement supérieur à celui des ouvriers.

L'écart sur effectif montre l'incidence de la variation des effectifs globaux. Il est ici de - 90 270,00 € et est favorable. Ceci est tout à fait logique puisque la société passe de 100 salariés à 97 salariés.

4. Quelle proposition les salariés ont-ils à retenir?

Si on prend en compte, au sens strict, uniquement l'incidence de ces deux types d'augmentation sur l'année 2015 il apparait que la $1^{\text{ère}}$ solution est plus favorable que la $2^{\text{ème}}$.

En effet, et sans calculs précis (donc sans tenir compte de l'effet cumulatif de la $1^{\text{ère}}$ solution) : 1,2 % sur 3 mois ne représente que 0,3 % (1,2/4) d'augmentation sur l'année alors que 0,5 % sur 8 mois représente 0,33 % (8/12) d'augmentation sur l'année.

5. Démontrer que la première option est la plus intéressante. Démontrer-le par le calcul et donner des arguments.

Par hypothèse nous allons utiliser une base de 100 pour le salaire de janvier.

Mois	1 ^{ère}	2 ^{ème}
IVIOIS	option	option
01	100,00	100,00
02	100,00	100,00
03	100,00	100,00
04	100,00	100,00
05	100,50	100,00
06	100,50	100,00
07	100,50	100,00
08	100,50	100,00
09	101,0025	100,00
10	101,0025	101,20
11	101,0025	101,20
12	101,0025	101,20
Total	1 206,01	1 203,60

Conclusion.

S'il apparait dans la 2^{ème} option que le salaire de décembre est plus important que dans la 1^{ère} option, pour autant on constate que pour l'année 2015 au sens strict, sur une base de 100, la rémunération annuelle pour 2015 est de 1 206,01 contre 1 203,60.

En conclusion la 1^{ère} option est préférable pour les salariés, que la 2^{ème} option.

- 6. Déterminer et calculer l'incidence de ces mesures sur la masse salariale de 2015 et les effets probables sur celle de 2016. Préciser les effets ainsi mis en évidence.
 - 6.1. Incidence de ces mesures sur la masse salariale de 2015
 - Effet niveau entre 2014 et 2015

Effet niveau de l'exercice
$$N = \left(\frac{\text{Indice décembre N - Indice décembre N - 1}}{\text{Indice décembre N - 1}}\right) * 100$$

Effet niveau entre 2014 et 2015 =
$$\left(\frac{101,0025 - 100,00}{100,00}\right) * 100 = 1,0025 \%$$

- Signification.

Entre décembre 2014 et décembre 2015, les salariés bénéficieront d'une augmentation de leur pouvoir d'achat de 1,0025 %.

- Effets masse de 2015

$$\frac{\textbf{Rappel}}{\textbf{Pappel}} = \textbf{Pappel} = \textbf$$

- Effet masse de 2015

Effet masse de 2015 =
$$\left[\frac{1\ 206,01\ -\ (100,00\ *\ 12)}{100,00\ *\ 12} \right] * 100 = 0,5 \%$$

- Signification.

Les augmentations intervenues en 2015 auront pour effet d'augmenter la MS de 2015 de 0,5 %.

6.2. Effets probables sur la masse salariale de 2016

- Effet report de 2015 sur 2016

Effet report de 2015 sur 2016 =
$$\left[\frac{(101,0025*12) - 1206,01}{1206,01} \right] * 100 = \frac{1212,03 - 1206,01}{1206,01} * 100 = 0,499\%$$

- Signification.

L'effet report de 2015 sur 2016 entraînera une augmentation de la MS sur 2016 de 0,499 %.

7. Calculer la prévision de masse salariale pour l'année 2015.

Rappel de la procédure

- Masse salariale prévisionnelle de N+1 (sans tenir compte des arrivées mais des départs)
- + Masse salariale supplémentaire en fonction des départs
- + Masse salariale supplémentaire suite aux arrivées
- = Masse salariale prévisionnelle de N+1

Nous allons tout d'abord présenter les indices suivants :

			Ceux qui part	ent	Ceux qu	i arrivent
	Ceux qui restent	Mars	Septembre	Novembre	Avril	Octobre
1	100,00	100,00	100,00	100,00	-	-
2	100,00	100,00	100,00	100,00	1	1
3	100,00	100,00	100,00	100,00	,	
4	100,00	-	100,00	100,00	100,00	-
5	100,50	-	100,50	100,50	100,50	-
6	100,50	1	100,50	100,50	100,50	-
7	100,50	-	100,50	100,50	100,50	-
8	100,50	1	100,50	100,50	100,50	-
9	101,0025	,	101,0025	101,0025	101,0025	1
10	101,0025	-	1	101,0025	101,0025	100,00
11	101,0025	-	-	101,0025	101,0025	100,00
12	101,0025	-	-	-	101,0025	100,00
	1 206,01	300,00	903,0025	1 105,0075	906,0100	300,00

- Prévisions de la masse salariale pour N+1 sans tenir compte des arrivées mais en tenant compte des départs

	Effectifs	Effectifs Salaires bruts de référence 2015		Masse salariale prévisionnelle	
	1	2	3	4 = 1 * 2 * 3	
Direction	3	6 089,00	12,0601	220 302	
Cadres	5	4 368,00	12,0601	263 393	
Agents de maîtrise	5	4 121,00	12,0601	248 498	
Techniciens	29	3 601,03	12,0601	1 259 435	
Employés	12	1 903,33	12,0601	275 452	
Electriciens	40	1 648,00	12,0601	795 002	
Total général	94	_	-	3 062 081	

(a) =>
$$[(3 606 * 30) - (1 * 3 750)]/29 = 3 601,03$$

(b) =>
$$[(2\ 060\ *\ 14)\ -\ (2\ *\ 3\ 000)]/12\ =\ 1\ 903,33$$

- Masse salariale à rajouter en fonction des dates de départ

	Mois de départ	Salaires bruts de référence 12/2014 1 2		Masse salariale prévisionnelle 3 = 1 * 2
Employé 1	Mars	3 000,00	3,0000	9 000
Technicien	Septembre	3 750,00	9,030025	33 863
Employé 2	Novembre	3 000,00	11,050075	33 150
Total général		-	-	76 013

- Augmentation de la masse salariale due aux arrivées

	Mois d'arrivée	Salaires bruts d'embauche	Indice 2015/100 2	Masse salariale prévisionnelle 3 = 1 * 2
Employé	Avril	2 800,00	9,0601	25 368
Technicien	Octobre	3 500,00	3,00	10 500
Total général		-	-	35 868

- Conclusion - Prévision de la masse salariale pour 2015

3 062 081

+ 76 013

+ 35 868

= 3 173 963 €

DOSSIER 4 - GESTION DE LA QUALITE

1. Sans calcul préalable, identifier les impacts organisationnels et économiques que risque de supporter la société Houblon du fait de la multiplication éventuelle des livraisons défectueuses.

La multiplication des livraisons défectueuses entrainerait la mise en place systématique de toutes les livraisons de ce fournisseur avec les coûts inhérents.

Il apparait également un possible disfonctionnement dans le processus de fabrication lié aux ruptures dans les approvisionnements de ces matières 1ères (défaut de production, non-respect du planning de livraisons ...).

Ce risque de pénurie pourrait se traduire par une perte d'une partie de la clientèle pour défaut de livraison.

2. Déterminer les paramètres de la loi binomiale de probabilités suivie par le nombre de livraisons défectueuses pour vingt livraisons réalisées, sachant que les occurrences des défectuosités sont indépendantes. Calculer la probabilité d'avoir au moins une livraison défectueuse

Notons X la variable représentant le nombre de livraisons défectueuses sur 20 livraisons réalisées

L'énoncé nous dit que sur 100 livraisons 2 sont défectueuses, donc si on note p la probabilité qu'une livraison

prise au hasard soit défectueuse, on a :
$$p = \frac{2}{100} = 0.02$$

Epreuve de Bernoulli:

On s'intéresse ici à 20 livraisons, pour chacune d'entre elles on va se poser la question de savoir si elle a été défectueuse (p = 0,02) ou non (q = 0,98).

On répète alors n = 20 fois cette même épreuve de Bernoulli.

La variable X représente donc le nombre d'évènements dits succès sur les n = 20 épreuves indépendantes.

Le contexte d'application de la loi Binomiale est satisfait avec : $\begin{cases} n = 20 \\ p = 0.02 \end{cases}$

Conclusion : X suit B(20; 0.02)

Calcul de la probabilité

On vous demande de calculer alors la probabilité que sur 20 livraisons, il y en ait au moins une défectueuse.

Cette probabilité se traduit de la manière suivante : $P\left(X \geq I\right)$

Comme
$$X$$
 suit $B(20;0,02)$:
$$\begin{cases} Valeurs \ possibles : X(\Omega) = \{0;1;\cdots;19;20\} \\ P(X=k) = C_{20}^{k}(0,02)^{k}(0,98)^{20-k} \end{cases}$$

$$P\left(X \ge I\right) = I - P\left(X < I\right) = I - P\left(X = 0\right) = I - \underbrace{C_{20}^{0}}_{I} \underbrace{\left(0,02\right)^{0}}_{I} \left(0,98\right)^{20-0} = I - \left(0,98\right)^{20} = I - 0.6676$$

Soit: $P(X \ge 1) = 0.3324$ *soit* 33,24%

Il y a 33.24 % de chances obtenir au moins une livraison défectueuse sur un ensemble de 20 livraisons.

3. A l'aide de la loi de Poisson, justifier son recours et déterminer la probabilité d'avoir trois livraisons défectueuses au moins. La société HOUBLON a-t-elle intérêt à accepter cette modification contractuelle ?

Notons, dans cette question, Y la variable représentant le **nombre de livraisons défectueuses sur 50** livraisons réalisées

On utilise le même raisonnement que dans la question précédente.

On s'intéresse ici à 50 livraisons, pour chacune d'entre elles on va se poser la question de savoir si elle a été défectueuse (p = 0.02) ou non (q = 0.98) ou non.

On répète ici alors n = 50 fois cette même épreuve de Bernoulli.

La variable X représente donc le nombre d'évènements dits succès sur les n=50 épreuves indépendantes.

Le contexte d'application de la loi Binomiale est satisfait avec : $\begin{cases} n = 50 \\ p = 0.02 \end{cases}$

Conclusion: $Y \ suit \ B(50; 0.02)$

Recours d'une loi d'approximation

Dès que le paramètre n d'une loi binomiale devient élevé, les calculs de probabilités deviennent très fastidieux car il n'existe pas de tables de la loi Binomiale à l'inverse de la loi de Poisson ou de la loi Normale.

Justification de l'approximation de la loi Binomiale par une loi de Poisson :

A partir des renseignements fournis en **Annexe 7**, et en remarquant que pour ce cas : $\begin{cases} n = 50 \\ p = 0.02 \end{cases}$

$$\begin{array}{l}
n = 50 \ge 30 \\
n \ p = 50 * 0.02 = 1 < 15 \\
p = 0.02 < 0.1
\end{array}
\Rightarrow
\begin{array}{l}
B \left(50 ; 0.02 \right) \Box P \left(1 \right) car \quad \lambda = n * p = 50 * 0.2 = 1
\end{array}$$

Notons **U** la variable de Poisson d'approximation : T suit la loi P(1)

La variable Y qui suit la loi Binomiale $B\left(50\,;0,02\right)$ peut être approchée par la variable U qui suit la loi de Poisson $P\left(1\right)$

Calcul de la probabilité

On vous demande de calculer alors la probabilité que sur 50 livraisons, il y en ait au moins 3 défectueuses.

Cette probabilité se traduit de la manière suivante : $P(Y \ge 3)$

Nous allons calculer cette probabilité en utilisant la loi de Poisson d'approximation et la table fournie en **Annexe 8**.

$$P(Y \ge 3) \approx P(U \ge 3) = 1 - P(U < 3) = 1 - P(U \le 2) = 1 - [P(U = 0) + P(U = 1) + P(U = 2)]$$

$$P(U \ge 3) = 1 - [0,3679 + 0,3679 + 0,1839] = 1 - 0,9197 = 0,0803$$

Les valeurs 0,3679 ; 0,3679 et 0,1839 correspondent aux nombres situés au croisement de la colonne $\boxed{\lambda=1}$ et des lignes $\boxed{k=0}$, $\boxed{k=1}$ et $\boxed{k=2}$ dans la table de la loi de Poisson donnant les probabilités individuelles fournie.

$$P(Y \ge 3) \approx P(U \ge 3) = 0.0803$$
 soit 8.03%

Il y a donc 8,03 % de chances d'avoir au moins 3 livraisons défectueuses sur 50 livraisons.

La société HOUBLON a-t-elle intérêt à accepter cette modification contractuelle ?

L'accord initial prévoyait une pénalité de 5 % du prix de vente dès que au moins une livraison était défectueuse sur 20 livraisons soit dans 33,24 % des cas (question 2 : $P(X \ge I) = 0,3324$)

Le **nouvel accord** prévoit une pénalité de 5 % du prix de vente dès que au moins 3 livraisons sont défectueuses sur 50 livraisons, ce qui arrive dans 8,03 % des cas (question $3:P\left(Y\geq3\right)=0.0803$), donc avec une probabilité nettement inférieure à celle trouvé pour l'accord initial.

La société HOUBLON n'a pas intérêt à accepter cette modification contractuelle.

4. A l'aide la loi normale, justifier son recours et calculer la probabilité d'avoir moins de quinze livraisons défectueuses, la correction de continuité étant supposée faite.

Notons, dans cette question, Z la variable représentant le nombre de livraisons défectueuses sur 1 276 livraisons réalisées

On utilise le même raisonnement que dans la question précédente.

On s'intéresse ici à 1 276 livraisons, pour chacune d'entre elles on va se poser la question de savoir si elle a été défectueuse (p = 0,02) ou non (q = 0,98) ou non.

On répète ici alors **n= 1 276 fois** cette même épreuve de Bernoulli.

La variable Z représente donc le nombre d'évènements dits succès sur les n=50 épreuves indépendantes.

Le contexte d'application de la loi Binomiale est satisfait avec : $\begin{cases} n = 1 \ 276 \\ p = 0.02 \end{cases}$

Conclusion: $V \text{ suit } B(1\ 276\ ; 0.02)$

Justification de l'approximation de la loi Binomiale par une loi Normale :

A partir des renseignements fournis en **Annexe 7**, et en remarquant que pour ce cas : $\begin{cases} n = 1 \ 276 \\ p = 0.02 \end{cases}$

$$\begin{array}{l} n = 1 \ 276 \ge 30 \\ n \ p = 1 \ 276 * 0.02 = 25.52 > 15 \\ n \ p \ q = 1 \ 276 * 0.02 * 0.98 = 25.0096 > 10 \end{array} \\ \end{array} \\ \Rightarrow B \left(\ 50 \ ; \ 0.02 \right) \ \sqcup \ N \left(\ n * \ p \ ; \ \sqrt{n * p * q} \ \right) \\ \text{Ici} : \ n \ p = 1 \ 276 * 0.02 = 25.52 \ \text{ et } \sqrt{n \ p \ q} = \sqrt{1 \ 276 * 0.02 * 0.98} = \sqrt{25.0096} \ \Rightarrow \ \sqrt{n \ p \ q} = 5 \\ \end{array}$$

Notons \mathbf{V} la variable Normale d'approximation :

La variable Z qui suit la loi Binomiale $B\left(1\ 276\ ;0,02\right)$ peut être approchée par la variable U qui suit la loi Normale $N\left(\ 25,52\ ;5\right)$

Calcul de la probabilité

On vous demande de calculer alors la probabilité que sur 1 276 livraisons, il y en ait moins de 15 défectueuses.

Cette probabilité se traduit de la manière suivante : P(Z < 15)

Nous allons calculer cette probabilité en utilisant la loi Normale d'approximation et la table fournie en **Annexe 9**.

Il ne faut pas oublier la correction de continuité.

$$P\left(\underbrace{Z}_{B(1\ 276,0,02)} < 15\right) \approx P\left(\underbrace{V}_{N(25,52;5)} \le 14,5\right)$$

$$P\left(V \le 14,5\right) = P\left(T \le \frac{14,5-25,52}{5}\right) = P\left(T \le -2,20\right) = \Pi\left(-2,20\right) = 1 - \Pi\left(2,20\right) = 1 - 0,9861 = 0,0139$$

Conclusion: $P(Z < 15) \approx 0.0139$ soit 1.39%

Il y a donc 1,39 % de chances d'avoir moins de 15 livraisons défectueuses pour l'année 2015, si l'on se base sur 1 276 livraisons par an.